
#### **Supplementary File**

#### **Supplementary Figure 1**

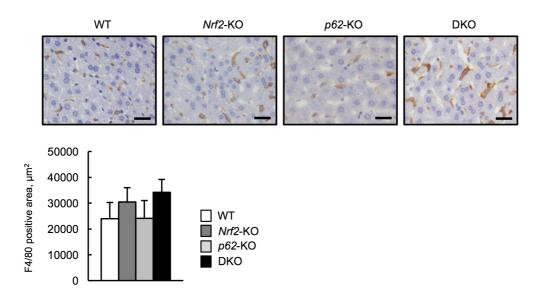


#### **Supplementary Figure 1.**

p62:Nrf2 double-knockout (DKO) mice exhibited increased liver mass, visceral fat accumulation, and obesity. **(A)** Liver mass in wild-type (WT), Nrf2-knockout (KO), p62-KO, and DKO mice at 30 weeks of age (n = 8 per group). **(B)** Computed tomography (CT) analysis of the weight of white adipose tissue (WAT) and visceral fat content in WT, Nrf2-KO, p62-KO, and DKO mice at 30 weeks of age (n = 8 per group). For CT analysis of body fat composition, mice were anesthetized with isoflurane and scanned using a Latheta micro-CT scanner (LCT-200, Hitachi Aloka Medical, Tokyo, Japan). Results are presented as the mean  $\pm$  SE. Statistical significance was determined using ANOVA with Scheffé's multiple testing correction. \*P<0.05, significantly different from the WT group;  $^{\dagger}P$ <0.05, significantly different from the Nrf2-KO group;  $^{\S}P$ <0.05, significantly different from the P

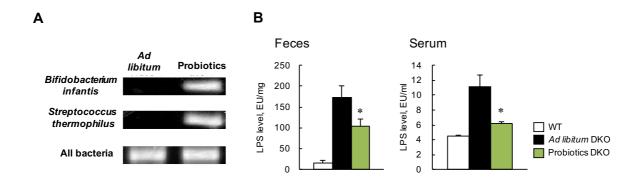


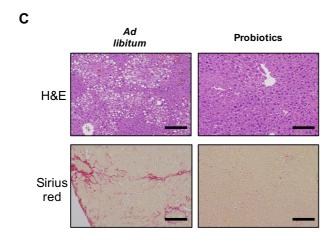
#### **Supplementary Figure 2.**


p62:Nrf2 double-knockout (DKO) mice exhibited severe inflammation in the liver and visceral fat tissue with aging. (A) Hematoxylin and eosin (H&E)-stained and sirius red-stained sections of representative liver specimens from wild-type (WT), Nrf2-knockout (KO), p62-KO, and DKO mice at 50 weeks of age (scale bar, 100 μm). (B) Immunostaining

with 4-hydroxy-2-nonenal (4-HNE) was performed to determine the presence of lipid peroxides (scale bar, 100  $\mu$ m). (C) H&E-stained sections of representative visceral fat tissue specimens at 30 weeks of age (scale bar, 100  $\mu$ m).




#### **Supplementary Figure 3.**


Deficiency of Nrf2 in Caco-2 cells reduced the expression of *Zo-1* of tight junction proteins. **(A)** Relative expression levels of intestine zona occludens-1 (*Zo-1*), *claudin 1*, and *claudin 2* mRNA in wild-type (WT), *Nrf2*-knockout (KO), *p62*-KO, and DKO mice at 8 weeks of age (n = 8 per group). **(B)** Relative expression levels of *Zo-1* and *claudin 1* mRNA in WT, *Nrf2*-KO, and *p62*-KO Caco-2 cells (n = 5 per group). mRNA expression levels were calculated as the ratio relative to that in WT. Results are presented as the mean  $\pm$  SE. Statistical significance was determined using ANOVA with Scheffé's multiple testing correction. \**P*<0.05, significantly different from the WT group; †*P*<0.05, significantly different from the *P62*-KO group.



#### **Supplementary Figure 4.**

The number of Kupffer cells in p62:Nrf2 double-knockout (DKO) mice did not change at 8 weeks of age. Immunostaining with F4/80 was performed to determine the presence of Kupffer cells (scale bar, 50 µm). F4/80-positive areas in the livers of wild-type (WT), Nrf2-knockout (KO), p62-KO, and DKO mice (n = 8 per group). Results are presented as the mean  $\pm$  SE. Statistical significance was determined using ANOVA with Scheffé's multiple testing correction. \*P<0.05, significantly different from the WT group;  $^{\dagger}P$ <0.05, significantly different from the p62-KO group.





#### **Supplementary Figure 5.**

Probiotics improved nonalcoholic steatohepatitis (NASH) in p62:Nrf2 gene double-knockout (DKO) mice. **(A)** PCR of *Bifidobacterium infantis* and *Streptococcus thermophilus* in feces. **(B)** Fecal and serum lipopolysaccharide (LPS) levels in WT, *ad libitum* DKO, and probiotics mice (n = 8 per group). **(C)** Hematoxylin and eosin (H&E)- and sirius red-stained sections of representative liver specimens from the *ad libitum* DKO and probiotics groups at 25 weeks of age (scale bar, 100  $\mu$ m). Results are presented at the mean  $\pm$  SE. Statistical significance was determined using ANOVA with Scheffé's multiple testing correction. \*P<0.05, significantly different from the *ad libitum* DKO group.

# Supplementary Table 1. Antibodies for immunoblotting, immunohistochemistry, and flow cytometry.

| Antibodies                                          | Manufacturer              | Cat No.    |
|-----------------------------------------------------|---------------------------|------------|
| Rabbit polyclonal anti-p62                          | Ishii et al., 2000        | N/A        |
| Rabbit polyclonal anti-Nrf2                         | Proteintech               | 16396-1-AP |
| Rabbit polyclonal anti-actin                        | Sigma-Aldrich             | A5060      |
| Rabbit polyclonal anti-Lamin A/C                    | Cell Signaling Technology | 2032       |
| Rabbit monoclonal anti-NF-κB p65 phospho            | Cell Signaling Technology | 3033       |
| Rabbit monoclonal anti-NF-κB p65                    | Cell Signaling Technology | 4764       |
| Rabbit polyclonal anti-Keap1                        | Cell Signaling Technology | 4617S      |
| Rabbit polyclonal anti-Zo-1                         | Thermo Fisher Scientific  | 61-7300    |
| Mouse monoclonal anti-claudin 1                     | Thermo Fisher Scientific  | 37-4900    |
| Mouse monoclonal anti-claudin 2                     | Thermo Fisher Scientific  | 32-5600    |
| Mouse monoclonal anti-4-hydroxy-2-nonenal           | JaiCA                     | MHN-100P   |
| Rabbit polyclonal anti-glutathione S-transferase P1 | MBL                       | 311        |
| Sheep anti-mouse IgG, HRP-linked whole Ab           | GE Healthcare             | NA931      |
| Donkey anti-rabbit IgG, HRP-linked whole Ab         | GE Healthcare             | NA934      |
| Rat monoclonal APC-conjugated anti-F4/80            | Thermo Fisher Scientific  | 17-4801-82 |
| PerCP/Cy5.5 anti-mouse CD206                        | BioLegend                 | 141715     |
| PE anti-mouse CD11c                                 | BioLegend                 | 117307     |
| Rat monoclonal anti-mouse MARCO                     | BIO-RAD                   | MCA1849    |
| Goat polyclonal anti-mouse SR-A1                    | R&D Systems               | AF1797     |
| Goat anti-rat IgG, Alexa Fluor 488                  | Thermo Fisher Scientific  | A-11006    |
| Donkey anti-goat IgG, Alexa Fluor 488               | Thermo Fisher Scientific  | A-11055    |

### Supplementary Table 2. Primers for real-time PCR analysis.

| Genes              | Primer sequences (5'- 3') |                          |  |
|--------------------|---------------------------|--------------------------|--|
|                    | Forward                   | Reverse                  |  |
| Tnf-α              | AAGCCTGTAGCCCACGTCGTA     | GGCACCACTAGTTGGTTGTCTTTG |  |
| Il-1β              | TCCAGGATGAGGACATGAGCAC    | GAACGTCACACACCAGCAGGTTA  |  |
| Il-6               | GAGGATACCACTCCCAACAGACC   | AAGTGCATCATCGTTGTTCATACA |  |
| Tlr-4              | GCAGCAGGTGGAATTGTATCG     | TGTGCCTCCCAGAGGATT       |  |
| Tgf-β1             | GTGTGGAGCAACATGTGGAACTCTA | TTGGTTCAGCCACTGCCGTA     |  |
| Procollagen-α1     | GCACGAGTCACACCGGAACT      | AAGGGAGCCACATCGATGAT     |  |
| Mcp-1              | TTCCTCCACCACCATGCAG       | CCAGCCGGCAACTGTGA        |  |
| Cd14               | CCTGCCCTCTCCACCTTAGAC     | TCAGTCCTCTCTCGCCCAAT     |  |
| Zo-1               | GCTAAGAGCACAGCAATGGA      | GCATGTTCAACGTTATCCAT     |  |
| Claudin 1          | CGGGCAGATACAGTGCAAAG      | ACTTCATGCCAATGGTGGAC     |  |
| Claudin 2          | CAACTGGTGGGCTACATCCTA     | CCCTTGGAAAAGCCAACCG      |  |
| Zo-1 (human)       | GAATGATGGTTGGTATGGTGCG    | TCAGAAGTGTGTCTACTGTCCG   |  |
| Caudin1<br>(human) | GCACATACCTTCATGTGGCTCAG   | TGGAACAGAGCACAAACATGTCA  |  |

Tnf, tumor necrosis factor; Il, interleukin; Tlr, toll-like receptor; Mcp, monocyte chemotactic protein; Cd, cluster of differentiation; Tgf, transforming growth factor; Zo, zona occludens.

## Supplementary Table 3. The RNA-guided CRISPR Cas9 system.

| Cells    | Genes      | Sequences (5'- 3')    |
|----------|------------|-----------------------|
| RAW264.7 | Nrf2       | GATGTGCTGGGCCGGCTGAAT |
|          | <i>p62</i> | GTTGGGGTGCACCATGTTTCG |
| Caco-2   | Nrf2       | GCGACGGAAAGAGTATGAGC  |
|          | p62        | GAGCCATCGCAGATCACATTG |